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Abslracl. A periodic approximant to a two-dimensional (2D) decagonal quasilattice is 
obtained by the projection method from a ID periodic lattice, i, which is a commensurate 
deformation of the 4~ decagonal lattice. The Bravais lattice of the approximant is given 
by the restriction of L onto the physical space, while its space group by the symmetry of 
the phase vector with respect to the 2~ lattice, L,, which is the projection of i onto the 
internal space. There exist 12 space groups of the rectangular approximantr, pmm, pmg, 
pgm, pgg, pml,  plm, pg1, plg, cmm(l'), cmmiY), cml and c lm,  which are derived from 
the special points or special lines of L, 

1. Introduction 

Approximant crystals to a quasicrystal are of current interest (see, for example, Spaepen 
et a/ 1990, Zhang and Kuo 1990). The structure of a quasicrystal is described with a 
quasilattice, which is obtained by the cut-and-projection method from a periodic lattice 
L in higher dimensions (Janssen 1988). Similarly, the structure of an approximant 
crystal is described with an approximant lattice (AL) ,  which is obtained by the same 
method from a deformed lattice i of L; the deformation is made so that i is fully 
commensurate with the physical space (Elser and Henley 1985, Henley 1985, Ishii 
1989, Niizeki 1991b, c). 

The quasicrystal and the relevant quasilattice have a non-crystallographic point 
symmetry and their approximants have crystallographic ones, which are subgroups of 
the former (Ishii 1989). The Bravais class to which an AL belongs is determined by i 
(Niizeki 1991b). A classification of Bravais classes of to the icosahedral quasilattice 
has been completed (Niizeki 1991b,c). A similar classification for the case of the 
two-dimensional ( 2 ~ )  decagonal quasilattice is given by Zhang and Kuo (1990). 

We shall develop in this paper a theory of the space groups of the ALS. Our theory 
is applicable to the case of any quasilattice. However, we present it by applying it to 
the case of the decagonal quasilattice because an abstract theory would burden the 
readers. 

In section 2, we shall summarize the properties of the zu decagonal quasilattice 
and the 4u decagonal lattice which yields that quasilattice. We apply in section 3 a 
rectangular deformation on the decagonal lattice and investigate 2~ lattices which are 
obtained as a section and a projection of the deformed lattice. Special points and other 
special manifolds of the 2~ lattices and the 4u ones are investigated in section 4. The 
space group of a shifted physical space relative to i is investigated in section 5 and 
the special manifolds associated with the space group are in section 6. The space 
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groups of the ALS to the decagonal quasilattice are classified completely in section 7. 
We discuss in section 8 several other subjects concerning the approximants to a 
quasilattice. The subject of section 6 precedes that of section 7 from the logical point 
of view but one may understand more easily the former if it is read after the latter. 

In this paper, a vector is always treated as a column vector but its components are 
shown as a row vector. 

2. The 2~ decagonal quasilattice and the 4D decagonal lattice 

The 4~ Euclidean space E, into which the 4~ decagonal lattice L is embedded is 
divided into the physical space E2 and the internal space E:; E4= E,@ E:. Five 4~ 

vectors eir i = 0-4, are defined by E ;  = ( e ( ,  el), where e; = [cos(iS), sin(iO)] E E, and 
ej=[cos(2iO),sin(2iO)]c E: with S = 2 1 r / 5 .  They satisfy en+&,+  ...+ E ~ = O .  E;  fix 
Cartesian coordinate systems of E,, E ;  and E,. Only four of the E ;  are linearly 
independent and generate L. We take E ~ ,  i = 1-4, as the basis vectors of L; L= 
( X ; n i & l n , ~ Z )  (cf Niizeki 1989a). The volume of a unit cell of L is given by 
det(eIe2E3e4)=5&/4. Since L is a Bravais lattice, it forms a n  additive group ( Z -  
module), which represents the translational symmetry of L. We shall identify L with 
the additive group. 

Let L,  (or Lb) be the projection of L onto E, (or E;) .  Then it is a Z-module 
generated by e( (or e;), i = 1-4, which are linearly independent over Z, the integral 
domain of integers. L, (or L;) is a dense set and called a pre-quasilattice. There exists 
a natural bijection between any pair of L, L, and Lb (Katz and Duneau 1986). A 
lattice vector I of L, and its associate I' of Lb form a lattice vector (I, 1 ' )  of L. 

The ten vectors, +ei, i = 0-4, are the vertex vectors of the unit regular decagon in 
E,  and are permuted among themselves by 10 mm ( D A  the point group of the decagon. 
Therefore, L, is invariant against G = 10 mm. In fact, L, is invariant against the 
quasi-space group (Niizeki 1991a), g,={{ulI}IuEG, IEL, ) -G*  L,,  where * stands 
for the semi-direct product and the Seitz notation has been used. G can be lifted to a 
4~ point group which represents the point symmetry of L. G and its lifted version are 
isomorphic to each other and are identified. Then G acts also o n  E;. Note, however, 
that the rotation through 21r f 5 of E,, for example, is changed to the rotation through 
4 v / 5  of E:. 

A decagonal quasilattice is the set of points as given by 

where + ( E  E;) is the phase vector, I' the associate of I and W (c E;) the window. 
We assume that W is a polygonal domain which is invariant against G. Then, Q has 
G as its macroscopic point group. The local isomorphism class of Q= Q(6, W )  is 
determined by W hut independent of 6. 

Let I I (+)=++E,  ( = { + + x l x ~ E J )  be a shifted physical space and X(+, W ) =  
n( +) + W be a strip. Then Q is formed of the projections onto E, of the lattice points 
of L in X(+, W). 

A representative choice for W is the unit decagon in E ; ,  whose vertex vectors are 
given by +e:, i =0-4. Then Q is given by the set of the vertex vectors of the Penrose 
tiling with pentagonal tiles, which is shown in figure 1 (Niizeki 1989a. b). 
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Figure 1. The decagonal quasilattice obtained from the d~ decagonal lattice L by using a 
window of the unit decagon. The lattice points are given by the positions of the vertices 
of the decagonal Penrose tiling with the pentagonal tiler. The centres of  stars (or pentagons) 
are derived from the special paints of type P (or P) of L, while the middle points of the 
bonds (or the centres of the skinny rhombi) from those of type X (or C) of  L. 

3. Approximant lattices to the 40 decagonal lattice 

D,o(10 mm) has two kinds of mirrors, representatives of which are the horizontal and 
the vertical mirrors. Two lattice vectors e, and e, + e, are parallel to the horizontal axis 
and are related by e,- T(el  + ea) = 0 with T = (1 + 6 ) / 2 .  This linear relationship ( L R )  

is equivalent to - r ( e , + e , ) - ( e , + e , ) / r = O  because e , + e , + .  . .+e.,=O. Similarly, an 
LR along the vertical direction is given by (e, - e4) - T (  e, - e,) = 0. e: satisfy similar LRS 

to those for e, but T is replaced by its algebraic conjugate T ' =  (1  -&)/2 ( =  - l / ~ ) .  
We shall deform the internal components e: of E ,  so that the resulting deformed 

lattice i is fully commensurate with E2 (Niizeki 1991b). This is performed by changing 
e: into i: so that they satisfy similar L R ~  to those of e: but T' (or, equivalently, T )  in 
the LRS is replaced by its rational approximants. To be more specific, the L R ~  among 
d: are &+ 9(&+ &) = O  and r(;l  - & ) + s ( b ; - h ; )  =0,  where p / 9  and r / s  are rational 
approximants to T. Using those L R ~  together with & + P I + .  . . + ; k = O ,  we may write 
the 2 x 4 matrix formed by d:, i = 1-4, as 

with t = p - 9. Note that = (29b,,  0). The values of b ,  and b, have no effects in our 
theory because the internal space is ultimately crushed by the projection. 

The deformed lattice i generated by ij = (ej, Zi) is designated by ( p / 9 ,  r / s ) .  i is 
considered to be an approximant to L. Note that p / 9  (or r / s )  is a simple fraction, so 
that either p or q is odd. 

A rational approximant to r is given usually by the ratio of two consecutive 
Fibonacci numbers; the Fibonacci series {E . }  = (0, 1,  1 , 2 , 3 ,  5 , 8 , .  . .} is generated by 
the recursion relation F,,, = Fk + Fk-, with Fu = 0 and F, = 1. 
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*Z, i = 0-4, form a deformed decagon whose point group is mm ( D,). so that the 
point group ti of i is mm; i is a rectangular approximant to L. 6 is a maximal 
subgroup of G = 10 mm. The space group of i is given by 

Any position vector in E4 can be indexed with ei as [xIx,xJx4] = & xiei. When si 
is deformed into ij the position vector is transformed to [x,x,x,x,]- = Z! xi:(. This is 
a homogeneous affine transformation of E, ,  which represents the phason strain (Ishii 
1989). It leaves E, invariant and commutable with 6. The details of the phason strain 
are summarized in appendix 1. We shall abbreviate from now on !he scperscip +-' nf 
the second index scheme because the first index scheme is not used. 

The projection of i onto E, is identical to L, but the one onto E; is different from 
Lb. We shall denote the latter by L , ;  L, = {Xj n,PIln, E Z}, which is, obviously, a Bravais 
lattice. It is equal to the primitive rectangular lattice L!O'= {m,b, + m2b21m,, m2E Z) 
or its sublattice, where b, = ( b , ,  0) and b, = (0, b,). From equation (Z), m,b, + m2b2 E L, 
with 

m,=-p(n,+n,)+t(n,+n,) ( 3 0 )  

m2=s(n,-n4)-r(n2-n,) .  ( 3 6 )  

p =  s mod 2 t - r m o d 2 .  (4) 

= 6 * i. 

Therefore, m, + m2 is even, if the following condition is satisfied: 

It can be proved that L, is equal to {m,b,+m,b,lm,,m,EZ, m,+m2=even) if this 
condition is satisfied but, otherwise, to L!"'. A proof is given in appendix 2. Thus, the 
space group of L, is pmm or cmm. It is given P y  g , = 6 *  L,.  We shall call L, the 
shadow lattice of i. g, is redefined here as g, = G * L,.  

A surjection (an onto-mapping) 'p from L, onto L, is defined naturally as I = Z8niej E 

L, % &nj< E L,.  'p is not a bijection. It can be extended to a surjection from g, onto 
g,: [ u l u } E g p ~ { u l u } E g ,  with u = ' p ( u ) .  Note that { u I & } E ~  with & = ( u , u ) .  

Let Lo={IIIELp,  ' p ( I ) = O }  (='p-'(O), the kernel of 'p). Then, it is written as 
Lo= i n  E,. Lo is the maximal subgroup (submodule) of i among those which leave 
E2 invariant. The LRS among il result in 

a ,  = pe, + d e ,  + 4 ( = - t ( e ,  + 4 - p ( e 2  + 4) (sa )  

a,= r ( e , - e , ) + s ( e , - e , )  (56)  
belonging to Lo; a, is horizontal and a2 vertical. It follows from these arguments that 
Lo is a 2~ Bravais lattice whose point group is mm. Note that E ,  is a lattice plane of 
i and L, is the 20 lattice given as the 20 section of i; our deformation of L into i 
is made so that the relevant 2~ lattice plane of L overlaps perfectly with E,. 

Using the-homomorphism theorem: L,= L , /L ,  (=i/L& we can prove that fi = 
Cl&, where Cl, n, and Cl, are the volumes of the unit cells of L, Lo and L, ,  respectively. 

a, (or a,) is the shortest lattice vector of L, among those parallel to the horizontal 
(or vertical) axis. If (a ,+a , ) /Zk  Lo, then a, and a2 are the basis vectors of Lo and L, 
belongs to the Bravais class pmm but, otherwise, a:  = ( a ,  - a , ) / 2  and a;=  ( a , + a 2 ) / 2  
are the basis vectors of L, and Lo belongs to cmm. It follows from equations (5)  that 
a_ necessary and sufficient condition for ! c : + a 2 ) / 2  to belong to Lo coincides with 
condition (4) above, That is, L, belongs to a common Bravais class as that of L,.  The 
space group of L, is go = 6 * L,,. 

We proceed to the case ( p / q ,  r / s ) = ( F k + , / F k ,  F,.,,/F,.). Then, we obtain a ,  =Tke0 
and a2= Tk'(e, - e 4 ) ,  so that a ,  = la1/ = T' and a2 = 1a21 = ~ " 2  sin(2n/5), where use has 
been made of the equality, Fk + TF'+, = T'+'. Using the recursion relation of the 
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Fibonacci numbers, we can prove that Lo for (Fk+, /Fk,  Fk.+, /Fk)  belongs to pmm if 
k'= k or k '=  k -  1. On the other hand, there exist two important cases where the 
centring occurs in Lo (Zhang and Kuo 1990), namely, (Fk+2/Fk+,,Fk/Fk-I) and 
( F k /  Fk-,  , Fk+JFk), which satisfy condition (4) because r = p - q and s = 2q -p for 
theformerand r=p+qands=pforthelatter. Weobtaina: = TX(-e,)anda;= Tk( -e3)  
for the former, so that the unit cell of Lo is similar to the fat tile in the Penrose tiling 
with rhombic tiles. Similarly, a:  = ''e, and a: = Tke, for the latter and the unit cell of 
Lo is similar to the skinny tile. The case where p and q are Lucas numbers is discussed 
in appendix 3. 

4. Special points and other special manifolds of 2 0  lattices and 4~ ones 

An extensive discussion on the subject in this section is given in Niizeki (1989h, 1991a). 
A point group is called a centring group if the origin is its sole fixed point. For 

example, a point group including the inversion operation is a centring group. A point 
of a periodic pattern is called a special point (SP) if its point symmetry with respect 
to the relevant space group g is represented by a centring group, which is a subgroup 
of the point group of g. Equivalent SPS of g are grouped into a class. g has a centre 
of inversion symmetry if and only if its point group includes the inversion. g is 
symmorphic if it has an SP with the full point symmetry of g. 

In this section, we confine our considerations only to the case of a Bravais lattice, 
which has a symmorphic space group. Then every SP is classified into type I or 11 
according to whether it has the inversion symmetry or not, respectively. A necessary 
and sufficient condition for an SP to he of type I is that its position vector is a half of 
a lattice vector. For example, the centring subgroups of the 2~ point group mm are 
mm or 2, so that the ZD Bravais lattice pmm (or cmm) has type 1 sps only; pmm (or 
cmm) has four (or three) inequivalent SPS as shown in figure 2, where each SP is 
represented by a symbol following the convention in solid state physics (Bradley and 
Cracknell 1972). The point groups of these S P ~  are mm except that S of cmm has 2. 

101 lbl 

Figure 2. The SPJ and special lines of ( a )  the primitive rectangular lattice and ( b )  those 
of the centred one. The point groups o f  the spr are given by mm except the case of S of 
cmm, where it  is given by 2. Type I (or Ill special lines represented by Greek (or Roman) 
letters pass (or do not pass) lattice points. The special line X in (a), for example, is 
compatible with SPS I' and X but not with Y and S. Conversely, the SP r in (01, for 
example. is compatible with special liner X and A but not with A and B. 
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The special manifolds associated with the subgroups ml and 1 m of mm are special 
lines, which represent the axes of the horizontal and vertical mirrors. Every mirror of 
a Z D  lattice is classified into type 1 or I 1  according to whether its mirror axis passes a 
lattice point or not, respectively. A type I (or 11) mirror is denoted by a Greek (or 
Roman) letter as shown in figure 2. Note that cmm has no type I I  mirrors. 

The 4~ decagonal lattice L has six classes of SPS: r, X ,  C, M ,  P and P' (Niizeki 
1989b). The point group of r is 10 mm, those of X ,  C and M are mm and those of P 
and P 5m; r, X ,  C and M are of type I while P and P' of type 11. spS with point 
group mm (or 5 m) can assume five (or two) orientations in L. 

When L is deformed into L, the point group degrades from 10" to mm. Corres- 
poindingly, the point groups of the of L degrade into their subgroups. Since the 
point group of L i s  equal (exactly, isomorphic) to mm, i has type I S P ~  only. The type 
I SPS of L change to SPS of i because the inversion symmetry is retained on the 
deformation but the type 11 ones do not. The point group of r degrades from 10 mm 
to mm. That of X remains unchanged or degrades into 2 depending on the orientation 
of X with respect to the point group 6 ( = m m ) o f  i. More precisely, X can assume 
three inequivalent orientations with respect to G and the point group is unchanged 
only when the axes of the mirrors of X are common to those of e. We shall distinguish 
the three spS of i using the symbols X ,  X '  and X";  the point group of X is mm. The 
same is true for the case of C or M of L. In summary, i has ten kinds of S P ~ .  It is 
important in a later argument that any SP of L is indexed as [h,h,h,h,]  with 2 h , ~ Z  
because it is of type I. 

It can be shown easily from L,= i n  E2 that SPS of L, are given by those of i but 
located on  E, .  Every SP of Lo has the same point group as that of the SP in i. On the 
other hand, there exists a surjection from the set of all the srr of L onto those of L, 
because the S P ~  of either lattice are indexed by integers and half integers. - 

A niirroi of i has a fixed 
plane in E4 and the plane is called a special plane of i. Special planes of i are 
classified into type I or I1  in a similar way as in the case of the ZD lattice. The crossing 
line between E2 (or E ; )  and a special plane of L is the axis of a mirror in g, (or gJ. 

Spec;a; ;iiies of iD ;?&tice, e,g.  Lo, Bre 

5. The space group of a shifted physical space 

An element o f f  acts on IT(+) (=+ + E?),  the shifted physical space, as a Z D  congruent 
transformation if it leaves n(+) invariant. Let us denote by f ( + )  the set of all such 
elements of f .  Then it is a subgroup of E; its translational part is given by Lo. It acts 
on n(+) as a Z D  space group, which we shall denote as g,(+). An element of g,($) 
is written as {ull) with U E 6 and 1~ L , ,  so that g,,(+) is considered to be a subgroup 

Let { u l u ) ~  g,(+) and U = ~ ( u ) .  Then { u I u } E g ,  and { u ~ & } E  f ( + )  with f =  (U, U )  E i. 

nothing but the point group of 4 with respect to L Conversely, g,(+)  is obtained 
from g, (+)  by g,($) = P-'(g8(+)).  It follows that the point group of g,(+) is equal 
(exactly, isomorphic) to g,(+).  

7Reorem 1. If U =  +'-+ E L,, then g,(+) and g,(+') are translationally ismorphic. 

of g, (=B * Lo). 

Moreover, {ulu)+ = 9. Therefore, pa(+)= q(g , ($ ) )  ( = ( { ~ ~ ~ ( ~ ) } ~ { ~ ~ ~ } ~ g ~ ( ~ ) } )  is 

.. . w e  proceed to theorem i. 

Proo8 g,( 4') = { € 1  u}gq(+ 11 El with {El 01 E g,, so that gJ47 = { E / u k , ( +  HEIutF' 
U with U E p-'( U). 



Approximant lattices to a decagonal quasilattice 3641 

Theorem 2. Let { u I u ) ~ g , ( @ )  be a mirror. Then a necessary and sufficient condition 
for existence of u€pp- ’ (u )  such that {ulu} ( E g o ( @ ) )  is a mirror is that {.lo} is of 
type 1. 

Roo$ We first show the necessity. If {ulu} is a mirror, then U must he perpendicular 
to theaxisofu .  I f u i s  horizontal (orvertical), wemaywrite u = k , ( e , - e , ) + k , ( e , - e , )  
(or u = k , ( e ,  + e J + k , ( e , + e , ) )  with k , ,  ~ , E Z .  It follows from equation 2 that U 
( = q ( u ) ) = 2 u o  with uo=(sk , - rk , )b ,  (or u , = ( - p k , + f k , ) b , ) ~  L,. Consequently, the 
axis of {ulu} passes lattice point uo of L,. 

We show next the sufficiency. Let {ulu}  be a type I mirror of L, and assume that 
U,,€ L, is located on the axis of the mirror. Then { u l O } ~ g , ( + ’ )  with +‘=+U,,. By 
theorem 1, we may assume from the outset that U =O.  Then O E ~ - ’ ( O ) ,  so that { u I O }  

U 

Theorem 2 shows that a mirror of g,(+) yields mirrors or glides of g,(+) if it is 
of type I or 11, respectively. 

We may draw the following conclusions from the above considerations. Firstly, i f  
4 is generic, then g p ( 4 ) =  Lo,  the translational part of go, so that its point group is 
trivial. Secondly, if g,(+) is a non-trivial point group, g,(+) is determined by the 
special manifold (an SP or a special line) of L, on which 4 is located. In particular, 
the point group of g,(4) is equal to that o f 4  in L, .  We consider from now on only 
the non-trivial cases. Then 4 in gJ4) may be denoted by the symbol which represents 
the class of the relevant special manifold, e.g. g,(T) and &(A). 

If Lo (or L,) belongs to pmm, there exist eight space groups, pmm, pmg, pgm, pgg, 
pml, plm, pgl, plg, which are derived from four classes of sps of L, and another four 
of special lines. On the other hand, if Lo belongs to cmm, there exist five space groups, 
cmm(r), cmm(Y), cml,  c lm and ‘c2’. The first two are isomorphic and are distinguished 
by the relevant spS of L,.  The space group of the last one, ‘~2’.  is actually p2 because 
point group 2 does not conform to a rectangular Bravais class. Note here that two 
space groups pml and plm, for example, are distinguished because the horizontal 
mirror in pml and the vertical one in p l m  are inequivalent. 

is a mirror of g,(&). 

6. The special points and special lines gp(+) 

6.1. The case of special points 

We consider in this subsection only the case where Lo (and L.) belongs to pmm; the 
results are easily generalized to the case of cmm. Moreover, w: assume that g,(4) has 
SPS, i.e. centres of symmetries. An SP of &(+) is that of L but located on n(q5). 
Therefore, an SP of g,(&) is represented by, say, X if it belongs to class X of SPS of 
i. 4 is the projection of (the position vector of) the SP of i onto E ; ,  so that it  must 
coincide with an SP of L,. Conversely, if 4 is an SP of L,, g,(+) has SPS. The point 
groups of the sp2 are mm or 2 and all the SPS have inversion symmetry. 

Let [h ,h ,h ,h , ]  be an SP of L. Then it is located on n(g) with 4 =X, h,& Another 
SP, [ h ; h ; h ; h & ] ,  is on the same plane if and only i f  Z , n , e , ~  L,, with n ,=2(h i -h : )€  2. 
It follows that ten classes of spS of L are divided into several disjoint groups (sets) as 
follows: if II(4) includes an wbelonging to a class in a group, it includes spS belonging 
to all classes in the group. 
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We can conclude from the above considerations that there exist only four spr of 
gp(@) per unit cell; they are at x, x + a , / 2 ,  x + a , / 2  and x + ( a , + a 2 ) / 2  with x being a 
representative of the four SPS. These four must be translationally inequivalent, Since 
i has four classes, I', X, C and M, of SPS with point group mm, SPS belonging to the 
four classes are located on E2 ( = I I ( O ) ) .  These four classes yield I', X, Y and S of 
gp(r) ,  which belongs to pmm. 

On the other hand, an SP of class X' can assume two different orientations SJ that 
two X's  with different orientations can be located on a single II(+). The same is true 
for the remaining five classes of SPS with point group 2. These six classes of S P ~  are 
paired into three which are associated with three space groups, g , ( X )  (=pmg), g,( Y )  
(=pgm) and gp(S) (=pgg). These three space groups have no centres with the full 
point symmetry (mm) because they are non-symmorphic. 

6.2. The case of special lines 

Many rectangular approximants to the decagonal quasilattice have mirrors. It can he 
shown easily that g,(@) has a mirrpr if and only if n(+) has a crossing line with a 
mirror plane (a special plane) of L; the crossing line is nothing but the axis of the 
mirror, Theorem 2 in section 5 shows that only type I special planes can have crossing 
lines with II(+). 

'1. The space group of an approximant lattice 

An AL to the decagonal quasilattice (see equation (1)) is obtained from i by the 
cut-and-projection method as 

( 6 )  
where 6' is the distorted window due to the phason strain. We shall call i the mother 
lattice of 4. If W is the unit decagon, 6' is a decagon whose vertex vectors are given 
by 5;:. The point group of 6' is given by &,_(=mm). 

Let S = q ( o ) .  Then we obtain S = S ( @ ,  W)- L,n(++ W),i.e. a cut of L, by the 
shifted window. We may write G =  (p"(S)  or, equivalently, Q={I!IE L,,  ( p ( l ) ~ S } .  
That is, 0 is a set of the projections onto E,  of the lattice points of L projecting onto 
S in E ; .  

Since Lo is the kernel of 9 :  Lp+ L , ,  0 is a periodic lattice whose Bravais lattice 
is given by Lo. Moreover, the number of the lattice points of 4 in a un!t cell is given 
by N = (SI, the number of the points in S. We shall call S the shadtw of Q. We consider 
hereafter only the non-trivial case where N 2 2. Two ALS 4 and Q' are translationally 
congruent if and only if their shadows S and S' are translationally equivalent with 
respect to L, .  

We consider the space group of 4. The point group of S, G(S) ,  is of fundamenta! 
importance. G ( S )  is a sukgroup of g, because S is a non-trivial subset of L, .  Since W 
has the full symmetry of G, G ( S )  with S = S(@, 6') is deeendent on @ hut not on 6'. 
It is important to notice here the following fact: S(+, W)=S(@',  6') if 4' is in a 
neighbourhood of @ because L, is discrete. We can redefine + without changing S in 
such a way that G(S)  coincides with g<(+), the point group of $J with respect to L, .  
We assume hereafter that @ is always chosen in this way. Then 4 represents the c e p e  
of symmetry of G(S)  provided that it exists. It follows that the space group of 0 is 
given by go(@) (=p-'(g3(+))), Thus, the classification in section 5 of the space groups 

4={rlr€ L,,  V ( l ) €  ++ 6') 
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of the shifted physical spaces is considered to be a classification of the space groups 

Once the mother lattice, L ( = ( p / q ,  r / s ) ) ,  is fixed, the ALS associated with SPS of 
L, are uniquely determined. The situation is different in the case of A L ~  associated 
with special lines of L,. Let us consider, for example, the case of class 1: of special 
lines. Then there exist several ALS associated with 1: because + can take any value on 
Z. They have a commpn space group pml  (or cml). The number is finite on account 
of the finiteness of U? It increases as the order of the approximant i is increased 
because the unit cell of L, becomes very small compared to & The same is true for 
ALS associated with other special lines of L,. Therefore we may call the series of ALS 

associated with a special line of L, a quasi-continuous series. 

Of ALr. 

We show in figure 3 several ALS to the decagonal quasilattice. 

8. Discussions 

The space group of &+, @) is p l  for a generic +. We shall call such an AL an irregular 
AL because its point symmetry does not conform to the Bravais lattice Lo. Also, 'c2' 
is an irregular AL. The situation when ALS with different structures have a common 
Bravais lattice will he called a polymorphism. On the other hand, two or more ALS 

will be called isomers if their space groups are identical. For example, cmm(r) and 
cmm( Y) are isomers and so are ALS in every quasi-continuous series. 

If q5 is located on an SP or a special line of L,, it may occur that two or more 
lattice points of L, are located on the boundary of the domain + + & Then, a difficulty 
occurs: if one of these points is included in S (=L,n(++ @)), another one on the 
opposite boundary must be discarded and vice versa (Niizeki 1989b). This is resolved 
by shifting 4 infinitesimally in an appropriate direction. Then the symmetry of the AL 

is broken (Niizeki 1989b) and the space group degrades into one of its subgroups. 
On the other hand, if the lattice points on the boundary are all included, the point 

symmetry of 4 is succeeded by &+, @). This treatment of the problem is equivalent 
to a restoration of the broken symmetry by a symmetrization. 

The problem occurs in the case where + is located on a special line of type 1:; 
lattice points of L, are located on the top edge and the bottom one of ++ @, the 
shifted decagon. Therefore, AL of type pmm and pmg, for example, incur such 
difficulties. If q5 is shifted vertically by an infinitesimal amount, they degrade to plm 
and plg, respectively, because the horizontal mirror is broken. Another type of problem 
occurs i n  the case of pmm, where q5 =0, because the vertices of @ are the lattice 
points of L,. Note, however, that the difficulties discussed here are due to our choice 
of the window and it may not occur for a different choice. 

The decagonal quasilattice has a selfsimilarity whose scale is given by T (Niizeki 
1989a). This is because TL= L or, equivalently, T(E ,E~E+, , )  = ( E , E , E + ~ ) M ,  where T ' 
is a linear transformation given by T = (T,  T, T ' ,  T ' ) " ' ~  ( T ' =  - t / T )  and A4 is aunimodular 
matrix; T scales E, and E :  differently. However, T i #  i. We can show, instead, that 
T ( p / q ,  r / s )  = (p ' /q ' ,  r ' / s ' )  with p ' =  p + q, q'= p, r '= r + s and s ' =  r. That is, T changes 
L into the next generation of i. Using this result, we can show that there exists a 
deflation procedure which changes an AL into another AL whose lattice constants are 
T-times the original ones. This subject will be fully discussed elsewhere. 

An AL has only a few centres ofglobal point symmetries per unit cell. A higher-order 
AL has, however, many centres of local point symmetries. They are derived from similar 
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Figure 3. Periodic appraximants to the decagonal quasilattice in figure 1. A bar shows a 
mirror and an arrow a glide. An approximant is characterized by the mother lattice, 
(p /q ,  T I S ) ,  and the sP (or the special line) on which the phase vector is located. The 
attributes of the approximants (aJ-(g) aye listed in the following table. The last TOW shows 
the space groups. 

( a )  ( b l  ( c )  (4 ( e l  (/i (8) 

r x y s z r y  
pmm pmg pgm pgg plm cmm cmm 

(+,b (I, 3 t$i, (2, i, ($,+I (4.9 (B, B 

The frustrations derived from horizontal mirrors or some other reasons are treated by 
symmetrization in (a), ( b l .  ( d l ,  (f I and (gl. The tiles offal  rhombi i n  these approximanti 
arc caused by the rymmetrization: such tiles are absent in the ideal quasilattice (see figure 
I]. The centre of a Tat rhombus is derived from an SP or type M of the mother lattice. The 
centres of local decagonal symmetries i n  ( a )  and (f) are also due to the symmetrization. 

The vertices and the centres o f t h e  "nil cell of each approximant (except ( e ) )  are SPI 

orthc lattice, as are the middle points o f  the edges. The S P ~  of (01, for example. are derived 
from SR of type r, X,  C and M of the mother lattice. while the ones of ( b l .  ((.I and ( d )  
(the centres of inversion symmetry) from those of X', X", C'. C", M' and M". The 
approximant ( e ]  is derived from l a )  as a result of  the symmetry breaking due to the 
fr"stratibn. 
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centres of f; the latter centres are derived from SPS of L. For example, the centre of 
a star (or a pentagon enclosed by five pentagons) in figure 3(c) (pgm) is derived from 
an SP of type P' (or P) of L. 

Two ALS with a common window but different phase vectors are not necessarily 
locally isomorphic in contrast to the case of quasilattices. We consider here the physics 
behind this result. The translational symmetry of g, is 4o-like but that of go is just ZD. 

This means that not only the point symmetry but also the translational symmetry is 
"l"&Lll pm1L"L"y "ll '4 p n P x .  L L P I I ~ I I I " I I  l l" l l l  P y"'"Lc1yJL"1 L V  115 yc;,ruurt, dpy1"",,,,",1L. 

This symmetry breaking yields a periodic 'field' (in the internal space) which couples 
with c$ and, consequently, c$ is locked to a particular value which minimizes the free 
energy. The 'field' will depend on the chemical potentials of the components of the 
quasicrystal, so that the location of the minimum can change depending on the 
concentrations of the components. Therefore a quasicrystal can have two or more 
approximants which belong to a single group of polymorphs. Note that occurrence of 
an approximant crystal described by  an irregular AL is not excluded a priori though 
it will be rare that the free energy has a minimum at a low symmetry point in E;. 
However, an irregular approximant may be realized on account of the symmetry 
breaking due to the frustration. 

We may say that a class of S P ~  of a space group is compatible with that of special 

1991a); in the compatible case, the point group of the special line is a subgroup of 
that of the SP. For example, Z and A of pmm are compatible with r but.A and B are 
not. Correspondingly, g,(X) and &(A) are subgroups of g,(r) but g,(A) and g , ( B )  
are not. The space group of an AL associated with a special line is derived from that 
associated with an SP on the special line. 

The theory developed in this paper is basically applicable to the classification of 
the space groups of A L ~  to any quasilattice. The remark presented in the last paragraph 
considerably simplifies the problem. Applying the present theory to the case of the 3~ 

icosahedral quasilattice, a complete classification of the space groups of the cubic, the 
orthorhombic and the rhombohedral approximants has been established. The results 
will be published elsewhere (Niizeki 1991d). 

k--L-.. .."A:" ,,., -- ~ *---":*:..̂  c--... " n..n^:^r..^*^l .̂  :A^ ..-.:..A:- _^_. 

:F ^ -  "..L..,,.̂":..- *^ &L^ P :" ,...."*-A ^^ - "..-":"I ,:....I^ r L ^  I -..-- ,x,::--,.: 
L l l L L D  11 a,, .,r " C ' " " ~ , , L ~  L" L l l C  l",,,,cil 1) I"L0.LL.Y "LI P >&,SLl'x, llllci I" L 1 1 S  I ' l l lGil \ I * , , L . z I . ,  
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Appendix 1 

The phason strain is represented by the 4~ matrix H satisfying ( k , k Z d 3 k 4 ) =  

H' has non-vanishing matrix elements only in the bottom-left 2 x  2 block, which is 
denoted by A. Then (i',&&&) = (e;e:e;ek)+A(e,eze3e4). Since det H = 1, the transfor- 
mation is volume-conserving. A is a diagonal matrix because H is commutable with 
6 (mm). To be more specific, we obtain A=(6, ,S2)di"p with S , = ~ ( q ~ - p ) / ( q + p ~ )  
and S , = ( s ~ - r ) / ( s + r ~ ) .  Inthecaseof(F,+,/F,,F,.+,/F,.),weobtain 6,=-(-1/r'), 

H(e,e,e,e,). we iiiay choose :: so ihat H = :+E' wheie ! is ihe uai: ma:;ix and 
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and 8 , = - 1 / ~ . ( - 1 / ~ ~ ) ~ '  (Zhang and Kuo 1990). Note that the values of b, and b2 
are fixed as b ,  =(&cos(?r /5) ) / (q+p~)  and b2=(J3Tsin(7i/5))/(s+rT).  

Appendix 2 

If n ,  = n4 and n2 = n 3 ,  then m, = 2( -pn, + tn2)  and m2 = 0. There exist n ,  and n, such 
that -pn ,  + f n ,  = 1 because p and 1 ( = p  - q )  are relative primes by the assumption that 
p /q  is a simple fraction. It follows that 26, E L,. Similarly, 2 6 , ~  L,. Since L, is a Bravais 
lattice, the set {2(k,b,+ k,b,)lk,, k2c 2) must be a superlattice (a sublattice) of L,.  

The next problem is to search the lattice points of L, in a unit cell of the superlattice. 
Such lattice points are written as m,b, + m,b2 in which m, and m2 as given by equation 
(3) are considered in mod 2. Since the sign may be changed arbitrarily without changing 
the parity, we may write m ,  = pk, + tk, and m, = sk, + rk,  mod 2 with k, = n ,  + n4 and 
k 2 =  n,+n, .  There exist two cases depending on whether A=pr- i s  vanishes or not 
in mod 2. If the condition (4) is satisfied, then A-  0 mod 2. On the other hand, if it is 
not, then A = 1 mod 2, which is easily proved by using the fact that p and f (or s and 
r)  cannot be even together. 

If A =  1 mod 2, the linear transformation from (k , ,  k2) to (ml ,  m2) is inverted in 
GF(2) ( = Z / 2 Z ) a s  k ,=rm,+tm,and  k,-sm,+pm2mod2,sothat  thepair(m, ,m,)  
can assume any of the four combinations (0, O ) ,  (0, l) ,  (1,O) and (1 , l )  in mod 2. It 
follows that L, = L:" in this case. On the other hand, if A = 0 mod 2, then m, + m2- 
0 mod 2 as shown in the text. Moreover, m, can assume both the parities because s 
and r are not even together. This completes the proof. 

Appendix 3 

It is well known that Lucas numbers Lk = Fk+,  + Fk- ,  yield the second series of rational 
approximants to T, though these approximants are less accurate than those by the 
Fibonacci numbers. ( L k /  Lh- ,  , Fk+,/ Fk) (or (Lht2/ L k t l ,  F k / F k - , ) )  belongs to cmm 
because p = 2 r - s  and q = 3 s - r  ( o r p = 4 r + 3 s  and q = 3 r + s ) .  The basis vectors are 
a;  = T (eo-e,) and a:= T (e,-e,) (or a;  = T (e,-e,)and a;  = Tk(eo-e , ) ) ;  therhombic 
unit cell is similar to the fat (or skinny) tile. The unit cell is, however, different in size 
and orientation from ( F k + , / F k + , ,  F k / F k - , )  (or ( F k / F k - , ,  Fh+, /Fk)) ,  though both are 
similar. 

k k k 
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